



# dissHEAT Analyse der bestverfügbaren Technologien und Ausblick auf zukünftige Entwicklungen für Erwärmungsöfen der Stahlindustrie

### **Dr.-Ing. Nico Schmitz**

Institut für Industrieofenbau und Wärmetechnik (IOB) RWTH Aachen University schmitz@iob.rwth-aachen.de



Dissemination of the heating technology research results for emission minimization and process optimization towards todays fossil-free heating agenda – dissHEAT (G.A. 101057930)



RIR

Coordination: Andreas Johnsson (SWERIM) Partners: SWERIM, BFI, CRM, RINA CSM, RWTH-IOB Review and analysis of EU projects and intl' literature Today's BAT and State of the Art Roadmap for future research



SWERI/M





Analysis of RFCS projects, Horizon Europe projects and international literature over the last 25 years based on the main topic "*reheating furnace*". Classification into five main topics:

- Heating and burner technology
- Modeling of entire furnaces, Level-2 control
- Sensors and controls, standards, regulations
- Materials in the furnace and product quality
- Heat transfer, heat recovery, CAPEX, OPEX



RIR

SWERI/M



Comprehensive analysis and evaluation, classified into KPIs and categorized with a special focus on low- $CO_2$  heating

Identification of market needs and definition of a roadmap for future research

Europeom commission Research Fund for Coal & Steel



Bŗi

## What it's all about...



### Production is always the main target of reheating furnaces, considering ...

• the best product quality

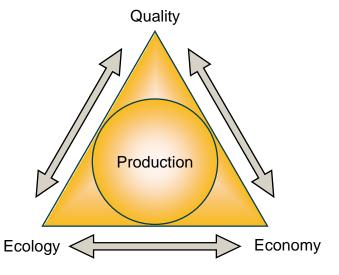
min. temperature gradient, min. thermal stress, low scale formation, low decarburization, ...

#### at minimum costs

low CAPEX, low OPEX through energy efficiency and digitalization

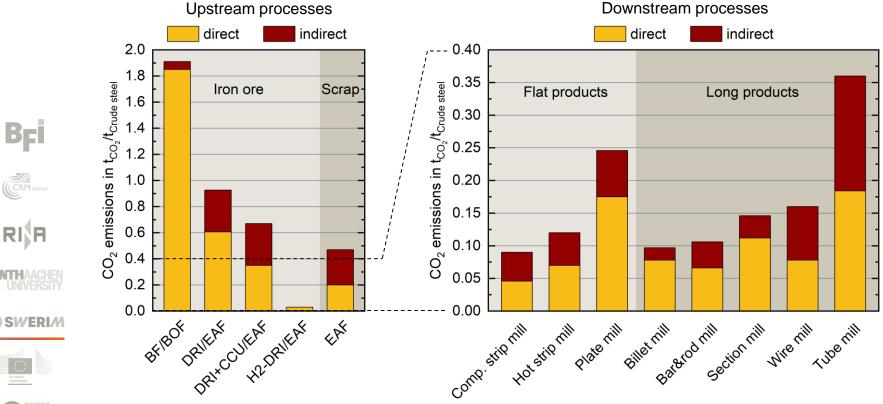
- with minimum carbon footprint energy efficiency, digitalization, alternative fuels, electrification?
  - and lowest air pollutant formation ultra low  $NO_x$  burners, low CO emissions




Research Fund for Coal & Steel

Bçi

RIR


) SWERI//

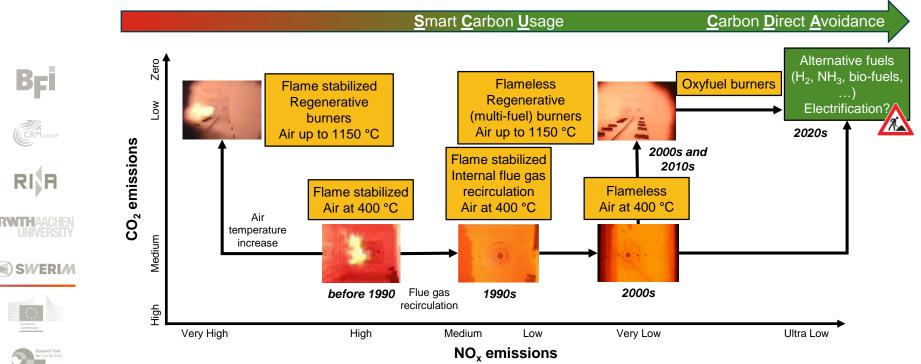
Highly relevant for <u>greenfield</u> projects, <u>brownfield</u> retrofits and <u>operating</u> furnaces in rolling mills and forging lines



### Where do we stand today...






Research Fund for Coal & Steel

Data from: E. Malfa: Sustainable heating technologies for today's and tomorrow's metal industry, dissHEAT workshop at ESTAD 2023, 15/06/2023, Duesseldorf based on EUROFER, Determination of GHG emissions in energy-intensive industries, 2020; ENERGIRON process data, 2015; Internal Tenova evaluations, 2022. CO<sub>2</sub> intensity for grid electricity 0.376 t/MWh

# Heating and burner technology



#### Combustion system developments in the last 25 years



# Heating and burner technology

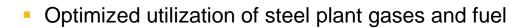
### Today's Best Available Technologies

- Regenerative burner technology
- Flameless/Ultra Low-NO<sub>x</sub> combustion
- Oxyfuel combustion



**dissHEA** 

- Multi-fuel burner configurations for integrated steel plants
- Productivity boosting with oxygen-enriched combustion




RIR

Bŗi

SWERI/





- Improved energy efficiency by high air preheating or oxyfuel combustion
- Lowest NO<sub>x</sub> emissions (in the range of 100 mg/m<sup>3</sup>)

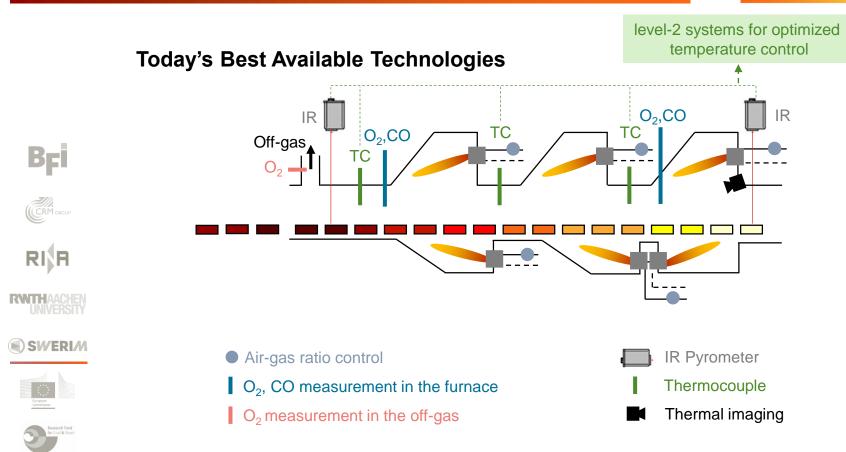


# **Modeling and Level-2 control**

Bŗi

RIR

) SWERIM




### **Today's Best Available Technologies**

- Prediction quality of combustion simulations has massively increased, but ongoing work – especially for new fuels
- Full furnace CFD simulations are possible with smart modeling approaches and reduced kinetic mechanisms/tabulated chemistry
  - Tools for design optimization and in-depth analysis of furnaces
- Dynamic temperature control by Level-2 models
- Connection to other parts of the plant (roughing mill) and Level-3 systems
- First integration of Artificial Intelligence (AI) for predictive maintenance etc.
  - Tools for process optimization, control and OPEX minimization

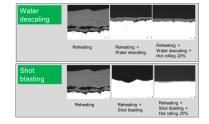
## Sensors/controls, standards, regulations

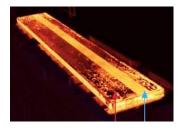




# Materials and product quality

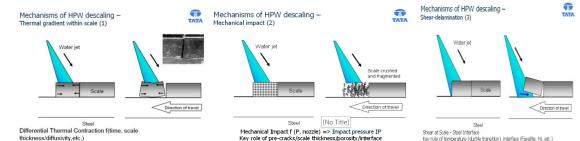
### Investigations and research in the last 25 years


- Focus of investigations on surface properties of the product:
  - Scale


Bri

RI

WERIM


- Decarburization
- Interfaces
- Defects





**dissHEAT** 

 Research in the past 25 years focusing on scale growth, descaling and application of coatings



# Materials and product quality



Elements with a very high effect on scale are:

#### **Example: Impact of alloying elements on scale formation:**









SWERI/M





|                                            | •<br>•<br>•<br>• | C<br>Al and Cr<br>Ni<br>P<br>Si<br>Mn | Porous and blisters<br>Reduction oxide<br>Metallic particles<br>Blisters<br>Formation of fayalite<br>Low adherence |
|--------------------------------------------|------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Max deep inclusions oxide in the substrate | Enta             | nglemen                               | t<br>nal oxidation                                                                                                 |

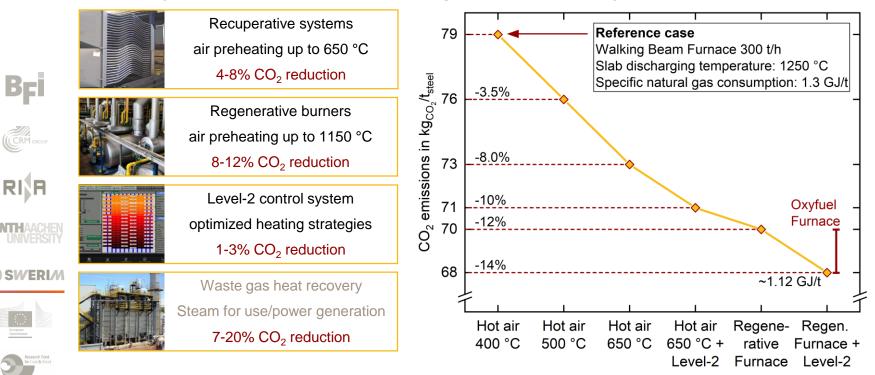


### Today's Best Available Techniques – theoretical guidelines

- Limit alloying elements (e.g. Al, Si, P, B, Cr, Mo, Ti, Nb, Cu, Ni, Sn, As, Sb)
- Limit reheating temperature
- Limit duration in the furnace, especially at high temperatures
- Limit oxygen content of the furnace atmosphere
- Limit humidity of the furnace atmosphere
- Limit transfer time between furnace and descaler
- Assure an optimum descaler performance related to the steel grade
- Apply coatings to avoid decarburization depending on product and steel grade
- Higher scale formation rates are beneficial for reducing decarburization, as these regions are removed by the oxide layer



Bŗi


RIR

) SWERIM

# Efficiency, productivity and economy



#### Today's Best Available Technologies for Efficiency improvement



Data from: E. Malfa: Sustainable heating technologies for today's and tomorrow's metal industry, dissHEAT workshop at ESTAD 2023, 15/06/2023, Duesseldorf



#### Heating and burner technology

- Flexible heating with alternative fuels and oxidizers:
  - Hydrogen, bio-fuels, ammonia and combinations with well-known fuels
  - Air, oxygen-enriched and pure oxygen combustion
- Electrification and hybrid heating concepts
  - Tailored and well investigated concepts for resistive and induction heating in industrial environment

Impact on process, product and plant!

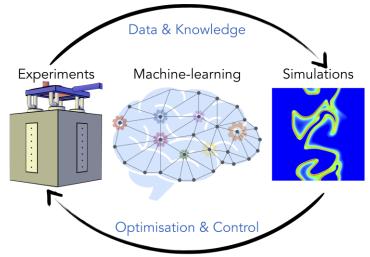








SWERI/






# **dissHEAT**

#### Modeling and level-2 control

- Extended use of AI and machine learning approaches
- Joining statistical and physical models (e.g. physics-informed neural networks, hybrid models)
- Dynamic and auto-adaptive modeling approaches for flexible process control
- Improved kinetic schemes and turbulence-chemistry interaction models for the prediction of new combustion regimes



Bŗi

RIR

SWERI/M



#### Sensors and level-1 control, standards, regulations

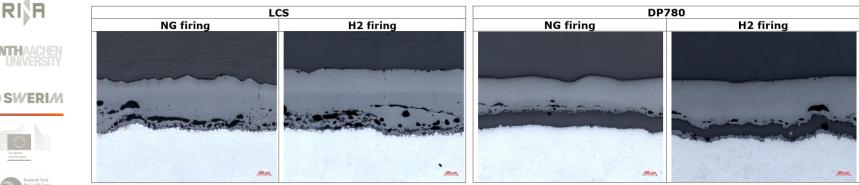
- Impact of alternative heating systems on measurement and control:
  - Flow measurement
  - Fuel quality measurement
  - Online air-to-fuel ratio control for flexible operation
  - Off-gas composition and pollutant emission measurement
  - Temperature measurement for process control
- Impact on standards and regulations:
  - NO<sub>x</sub> limit definitions for flexible operation
  - Revision of BREF Ferrous Metals Processing to new limit definitions
  - Revision of emission measurement standards







UNIVERSITY








#### Materials and product quality

- Study of the impact of residuals on product quality (higher scrap rates):
  - Cu: diffuses quickly leading to segregation, roughening and intergranular oxidation
  - Mo: Increases scale adhesion above 0.25%
- Full screening of steel grades in new furnace atmospheres






Bŗi

**dissHEAT** 

### Heat recovery, heat transfer, productivity and economy

- System integration research:
  - Internal integration of new heating concepts within steel mill
  - Options for CCS/CCU
  - Flexible interaction with gas and electricity grids
  - Integration with chemical industry for synthetic fuel production
  - Heat integration with steam production or alternatives
- Flexible oxygen utilization for productivity and from an economic perspective













SWERI/













Research Fund for Coal & Steel

### Thank you for the attention!

### Stay informed www.dissheat.eu

Dr.-Ing. Nico Schmitz | Group Manager Combustion Technology Department for Industrial Furnaces and Heat Engineering (IOB) RWTH Aachen University <u>schmitz@iob.rwth-aachen.de</u> | <u>www.iob.rwth-aachen.de</u>