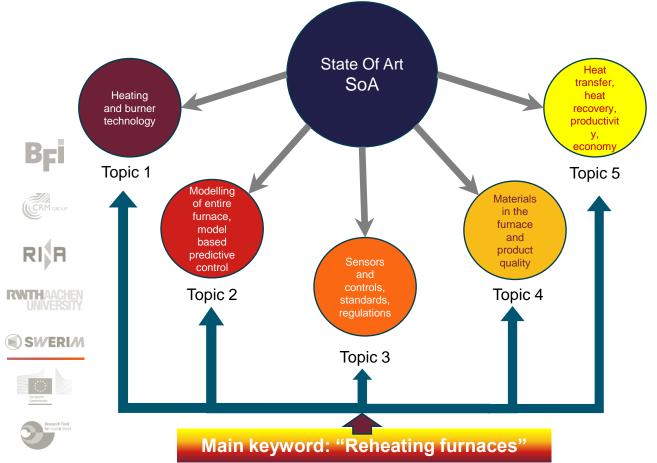


Research Fund for Coal & Steel


dissHEAT SoA Highlights

Filippo Avellino, Oliver Hatzfeld

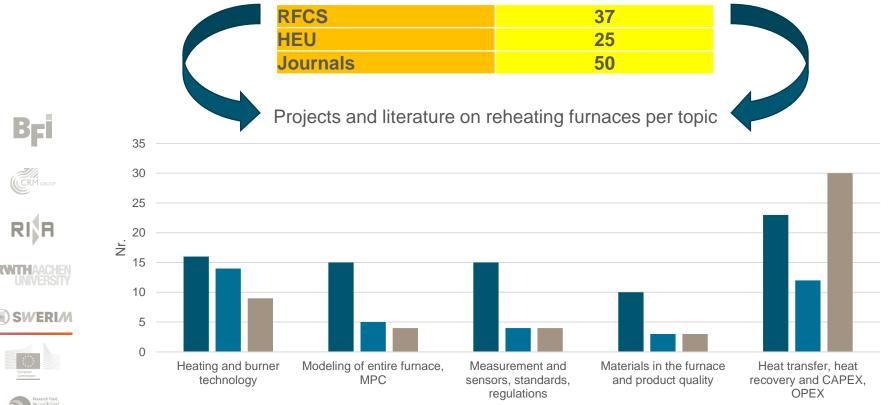
filippo.avellino@rina.org oliver.hatzfeld@bfi.de

dissHEAT - SoA Highlights

dissHEAT

- RFCS projects, HEU projects and intl literature performed over the last 25 years
- Classification into 5 main topics or subgroups

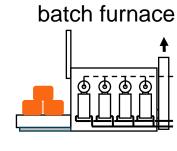
Heating and burner technology Modeling of the entire furnace, level 2 control


Materials in the furnace and product quality

Sensors and control, standards, regulations

Heat transfer, Heat recovery, CAPEX, OPEX

SoA - Relevant literature per topic

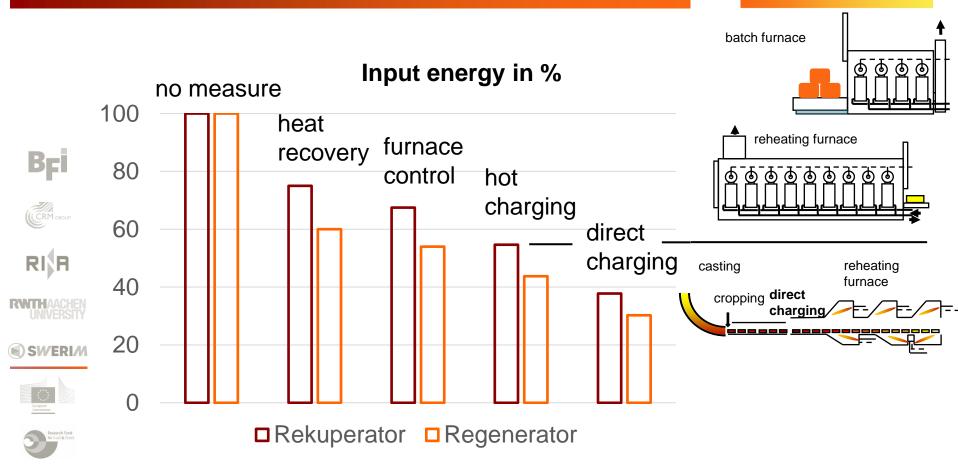

Research Fund for Coal & Steel

RFCS HEU International literature

SoA - Heating and burner technology

Bŗi

Key technologys to decrease CO_2 and NO_x emissions of heating and burner technology for reheating furnaces:


continuously operating furnace

dissHEAT

CKIM GROUP				
RIA	Burner technology	Process gases	Efficiency by Heat recovery	Efficiency by process combination
RWITH AACHEN UNIVERSITY	NOx reduction	Substitution of	Heat recovery	Continuous casting
SWERI/M	- Flameless	natural gas in	form off gas by	not coupled rolling:
	combustion	reheating furnace	Combustion air	warm charging
	- Ultra Low-NOx	100% or mixture	preheating	Continuous casting
Commission	combustion	with NG, oxidizer:	- recuperative	coupled with rolling:
Research Fund for Coal & Steel		air or OEC	- regenerative	direct charging

SoA - Heating and burner technology

State of the art 2023

Ref. Refers to a natural gas fired furnace with SoA recuperators

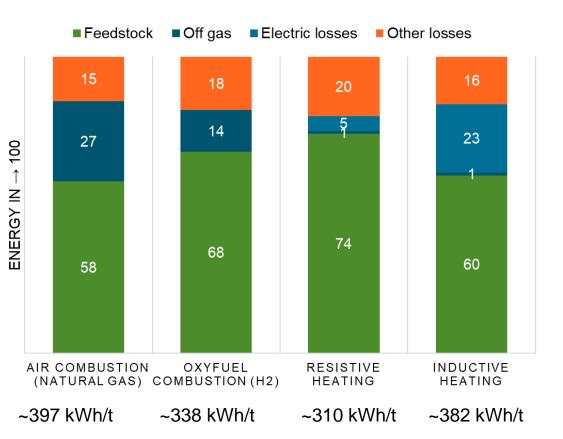
- Flameless regenerative burners
- Flameless oxyfuel combustion
- Electrical heating
 - Resistive radiative heating •
 - Inductive heating •

High ⁻roductivity Moderate Low Ref.

Efficiency

		Flameless regenerative burners Flameless oxyfuel combustion		Resistive radiative heating	Inductive heating	
SWERI/M	CAPEX	Higher investment cost for burners	Higher investment cost for burners, need of oxygen infrastructure	Need new investment of entire furnace	Need new investment of entire furnace	
Errorenze Bernenze Research Fund	OPEX	Lower specific fuel cost	Lower specific fuel cost, additional cost for oxygen	 Lower specific energy cost (highly dependent on elec. cost) Uncertainties regarding longevity of heating elements 	Slightly lowered energy cost (highly dependent on elec. cost)	

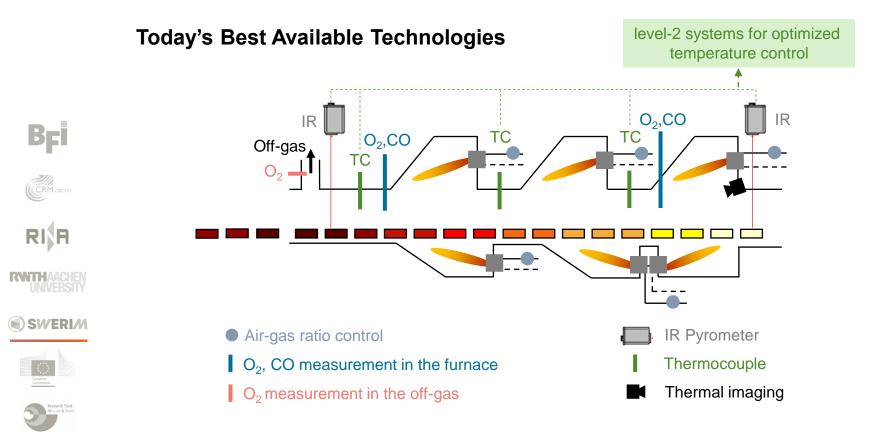
Energy performance - example



The key technologies reviewed in topic 3 focus on **improving the energy efficiency of furnaces** and **enhancing product quality** using advanced measurement and control technologies.

RIR

SWER


Main parameters recorded in a furnace:

DUP	Furnace and charge temperature	Furnace atm. measurement and control (O ₂ , CO)	Air and fuel flows	Off-gas composition
a Cheny RI <i>M</i>	 IR (gas) pyrometers Thermal Imaging Suction pyrometer Optimized control of temperature 	 Measurement of air and gas flow ZrO2 probes for O₂ content measurement Pneumatical/electroni cal gas/air ratio controllers 	 Vortex, ultrasonic, thermal flow meters, vane wheel anemometer Orifice meters still typically used 	 Continuous and portable off-gas analysis equipment according to SRM (Standard Reference Method)

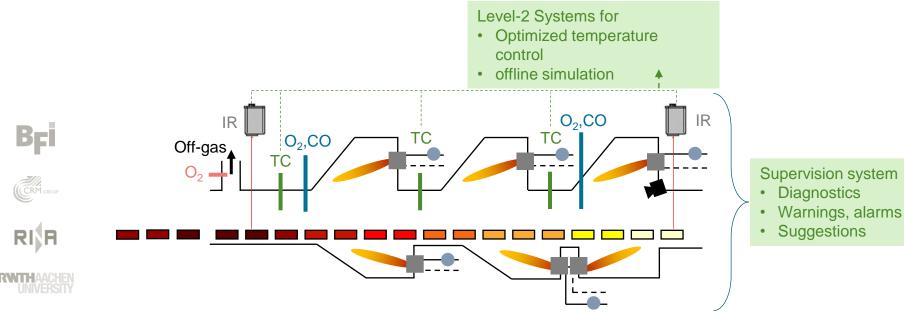
Research Fund for Coal & Steel

SoA - Sensors/controls, standards, regulations

SoA - Modelling of entire furnace, model based predictive control (Level 2)

The key technologies reviewed in topic 2 focus on **modelling of furnace** and **model based** predictive control (level 2) in order to:

- improve energy efficiency of the furnace ٠
- minimize stop due to accidents
- enhance product quality ٠


SoA - Modelling of entire furnace, model based predictive control (Level 2)

No technologies, but *methods*

IT Technologies for data storage/management

No BAT available for the modeling technologies

SWERI/M

European Commission

•

Research Fund for Coal & Steel

SoA - Materials in the furnace and product quality

- Focus of investigations in reviewing *Materials in the furnace and product quality :* Surface properties: decarbonization + scale + interface + Defects
- Success-story:

Bŗi

- Definition of critical parameters (e.g. atmoshere, chemistry)
- Interaction with descaling
- Possible application of coatings

- Limit alloying elements (e.g. Al, Si, P, B, Cr, Mo, Ti, Nb, Cu, Ni, Sn, As, Sb)
- Limit reheating temperature
- Limit duration in the furnace, especially at high temperature
- Limit oxygen content
- Limit humidity
- Limit transfer time between furnace and descaler
- Assure an optimum descaler performance related to the rolled grade
- Apply coating to avoid decarbonisation depending on product and grade. Higher scale formation rates are beneficial for reducing decarburization, as decarburised regions are removed by the oxide layer. For some materials decarburization was not detectable when Stopoxy was used.