

Research developments during the last 20 years and todays State-of-the-Art

Joel Falk Researcher, joel.falk@swerim.se

Topic 5: Heat recovery, heat transfer, productivity and economy

- 20 articles, 13 RFCS and 6 HEU reports, technology provider reports and webpages, state of the art documents
- \rightarrow TRL, efficiency, productivity, CAPEX, OPEX, CO₂ emissions

Bŗi

Research & Development drivers:

• Profitability and legislative limits of SO₂, NO_x, and GHG emissions

Funded by the European Unior

Heat recovery/efficiency – combustion

Heat recovery/efficiency Increases profitability and reduces emissions

Recovery potential

Off gas temperature and flue gas load

Primary measures

- Air preheating
- Feedstock preheating
- Decrease or eliminate flue gas load

Secondary measures

- Waste heat boiler
 - Organic Rankine cycle
- Thermoelectric generators

dissHEAT

SWERI/M

Bŗi

State of the art 2001

Limitations

- Air preheating < 600 °C
- Cold charging
- Continuous furnaces

Funded by the European Union

Reference Document on Best Available Techniques in the Ferrous Metals Processing Industry 2001

Trade off between energy efficiency and NO_x emissions \rightarrow combined heat recovery approaches necessary

Reference Document on Best Available Techniques in the Ferrous Metals Processing Industry 2001

Development in heating technology

Flameless combustion

- Low or ultralow NO_x emissions
- Regenerative systems
- T_{air} > 1000 °C

Bŗi

RIR

NERIM

- Oxyfuel combustion
- Reduced flue gas load

✓ Hot/direct charging

- ✓ Batch processes
- More options available to reach high efficiency

Successful use of flameless oxyfuel in steel reheating, 2020

Technology	Fuel savings*	Productivity*
Recuperative/regenerative burners	<30 %	<15 %
Oxygen enriched combustion	<30 %	<30 %
Flameless regenerative burner	<40 %	<30 %
Flameless oxyfuel combustion	<65 %	<50 %

Bŗi

RIR

*Compared to combustion of natural gas with cold air.

Funded by the European Union

Upgrading/retrofitting an old furnace is generally possible

Dissheat: State of the art report

Situation in industry

Reference Document on Best Available Techniques in the Ferrous Metals Processing Industry 2022

Development in electrical heating

dissHEAT

Electrical heating

- Resistive heating
 - Direct

Bŗi

RIR

) SWERIM

- Radiative
- Convective
- Inductive heating
- Plasma heating
- Rotodynamic heating
- Hybrid heating

	Technology	Heat recovery/ Efficiency	Heat transfer/ productivity
	Combustion	Low to high	Moderate
	Inductive heating	Low to high	High
g	Indirect radiative heating	High to very high	Low
	Direct resistive heating	Moderate to very high	Very high

Typically requires a new furnace installation

Eurostat – prices of natural gas and electricity in EU27 2007-2022 (large consumers)

Price variability

Electrical heating

Feasibility depends on local electricity price and electricity mix (fossil-free share)

Eurostat – prices of natural gas and electricity in Sweden 2007-2022 (large consumers)

Electrofuels

- Does not require major modification to conventional heating furnaces
- Less efficient than electrical heating or conventional heating
- Can be stored and transported
- \rightarrow Can utilize regional and daily variation in electricity price

Fuel	η _{syn} (LHV)	η _{tot} (50 % < η _{com} < 75 %)
Hydrogen (H ₂)	~50-70 %	~25-52.5 %
Ammonia (NH ₃)	~55-65 %	~27.5-48.8 %
Methane (CH ₄)	~49-65 %	24.5-48.8 %

RIR

Bŗi

unded by the uropean Union

"Process efficiency simulation for key process parameters in biological methanogenesis" "Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape" "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review"

Funded by the European Union

Thank you for the attention!

Stay informed www.dissheat.eu