

New concepts for NO_x emission measurement and limits - challenges for new fuels and fuel flexible systems

Dr.-Ing. Nico Schmitz

Department for Industrial Furnaces and Heat Engineering (IOB) RWTH Aachen University schmitz@iob.rwth-aachen.de

Outline

Current NO_x emission regulations

Challenges for future combustion systems

Consequences for NO_x emission limits and measurement techniques

SW/ERI/M

NO_x emission regulations at EU-level

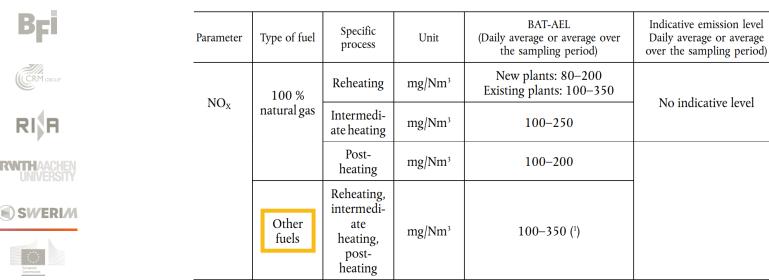
- National Emission Reduction Commitments Directive (NEC) EU 2016/2284 defines five important air pollutants:
 - Nitrogen oxides (NO_x)
 - Non-methane volatile organic compounds (NMVOC)
 - Ammonia (NH₃)
 - Sulphur dioxide (SO₂)
 - Fine particulate matter (PM_{2,5})
- The general framework for industrial production plants is built upon the Industrial Emissions Directive (IED) 2010/75/EU and refers to the best available techniques (BAT) in specific sectors.
- The BAT and the associated emission levels/limits are documented in the best available techniques reference document (BREF) and the BAT conclusions.

SWERI//

Bçi

RIR

IDAAHTAAC


 Individual transfer of the IED and BREFs including specific emission limit values into national legislation

BREF Ferrous Metals Processing Industry

Research Fund for Coal & Steel

- Definition of BAT-associated emission levels for reheating furnaces defined in the BREF "<u>Ferrous</u> <u>Metals Processing Industry</u>" (FMP)
- Table 1.9 in the BAT conclusions "[...] feedstock heating in hot rolling":

(¹) The higher end of the BAT-AEL range may be higher and up to 550 mg/Nm³ when using a high share of coke oven gas or of CO-rich gas from ferrochromium production (> 50 % of energy input).

NO_x emission limit definition - today

- "Indicative emission levels for emissions to air [...] refer to concentration (mass of emitted substances per volume of waste gas) under the following standard conditions: dry gas at a temperature of 273.15 K and a pressure of 101.3 kPa, and expressed in mg/Nm³."
- Reference oxygen level is given for feedstock heating and drying: 3 vol-% (dry)
- For a measured NO_x concentration of 85 ppm @ 5 vol-% O₂ (dry) the emission value is calculated by:

$$Q_{\text{NO}_{x},\text{dry,ref}}\left[\frac{mg}{m_{dry}^{3}}\right] = Q_{NO_{x},dry}\left[ppmv_{dry}\right] \cdot \left(\frac{21 - Q_{O_{2},ref,dry}\left[vol\%_{dry}\right]}{21 - Q_{O_{2},dry}\left[vol\%_{dry}\right]}\right) \cdot \rho_{NO_{2}}$$

$$Q_{\rm NO_x, dry, ref} \left[\frac{mg}{m_{dry}^3} \right] = 85 \ ppmv_{dry} \cdot \left(\frac{21 - 3 \ vol\%_{dry}}{21 - 5 \ vol\%_{dry}} \right) \cdot 2,05 \frac{kg}{m^3} = 196 \ \frac{mg}{m_{dry}^3}$$

Bŗi

RI

RWITHAACHEN UNIVERSITY

SWERI/M

NO_x emission measurement - today

- Either continuous emission monitoring system (CEMS) or periodical measurements with portable analyzer systems are applied to quantify the NO_x emissions of reheating furnaces.
- Standard reference method for the determination of the mass concentration of nitrogen oxides: chemiluminescence (EN 14792)
- Gas analyzer systems have to fulfill a number of standards (EN 15267 1-4, EN 14181, EN 15259, ...)
- Today, mostly dry extractive gas analyzers are used to measure NO_x and O₂ concentrations in the off-gas.

Bŗi

RIR

Challenge – future combustion systems

New fuels:

 Hydrogen (H₂), ammonia (NH₃), biofuels (e.g. DME), new top gases, blends of natural gas (NG) and these fuels...

New oxidizers:

oxygen-enriched combustion, pure oxygen (O₂)

• Fuel flexible operation:

fluctuating availability of fuels

SWERI/M

dissHEAT

Challenge – future combustion systems

<u>Case study I:</u> NO_x concentration of 180 ppmv_{dry} @ 3 vol.-%_{dry} O₂

	Basis	Unit	NG/air	H ₂ /air
B _F i	measured NO _x level, dry off-gas	ppmv	180	180
CRM GROUP	Calculation acc. to BREF	mg/m ³ @ 3 vol-%	351	351
RIA	NO _x mass flow	g/h	350	257

• This results in lower NO_x emission limits for H_2 through the back door.

- SWERI/M
- Luropen Commission
- For a system retrofitted to hydrogen combustion or a fuel-flexible combustion system running from natural gas (NG) to hydrogen (H₂), the NO_x mass flow emitted through the stack decreases by 26% when switching from NG to H₂.

Research Fund for Coal & Stee

Challenge – future combustion systems

Basis

 H_2/O_2

<u>Case study II:</u> NO_x mass flow (wet) per unit of energy: 110 mg/kWh @ 2 vol.-%_{wet} O₂

Unit

D_i	
DHI	
_	

SWERI/M

NOx amount in off-gasmg/kWh110110NOx concentration (wet)ppmv (wet)182567NOx concentration (dry)ppmv (dry)26528222

H₂/air

- For a system running on pure oxyfuel combustion, the NO_x emission limit is not applicable¹.
- NO_x measurement technologies based on dry off-gas used today are not applicable for H_2/O_2 combustion (H_2O -concentration in the off-gas, NO_x -concentration in the dry off-gas)
- Current NO_x limits and measurement techniques are not applicable to oxyfuel combustion with new and flexible fuel systems.

Consequences – NO_x emission limits

Current NO_x emission limits are only formulated for NG and "other fuels" in the BREF FMP

 New definitions of NO_x limits must be established to allow a <u>fair comparison between</u> <u>different fuels and oxidizers</u>

RIR

Bŗi

Approach: limit definitions in "mass flow per energy unit" ($\rightarrow mg/kWh$) are applicable and comparable for all fuels

dissHEAT

Alternative: mass of NO_x per ton of product produced ($\rightarrow kg(NO_x)/t(steel)$

- NO_x measurement based on dry extractive techniques is the most commonly used and is also applicable to new and different fuels with air combustion.
- B_Fi

RIR

- Additional O₂ (mandatory today) and H₂O (<u>not applied today</u>) measurements are needed to allow comparable results.
- Due to the high water vapour concentration in e.g. H₂/O₂ combustion (~98 vol-%), dry measurements of NO_x and O₂ with high accuracy are <u>not possible</u>.

SWERI/M

Approach: emission measurement on a wet basis

 For a NO_x limit in mg/kWh, the <u>fuel quality must be measured and transmitted to the</u> <u>emission monitoring system</u> to calculate the LCV and the min. off-gas volume.

Summary and outlook

- Legislation is not ready for the widespread introduction of defossilized combustion systems and fuel-flexible industrial furnaces.
- Open topics:
 - NO_x limit definitions
 - Revision of BREF FMP to new limit definitions
 - Development of emission measurement system
 - Emission measurement standards

Stay tuned:

- IOB will shortly publish a paper describing the upcoming challenges for NO_x limits and measurement in detail.
- IOB and many partners are working on NO_x emission measurement solutions for H₂/air and H₂/O₂ combustion systems in the HYINHEAT project (<u>www.hyinheat.eu</u>)

Bfi

Thank you for the attention!

Stay informed www.dissheat.eu

Dr.-Ing. Nico Schmitz | Group Manager Combustion Technology Department for Industrial Furnaces and Heat Engineering (IOB) RWTH Aachen University <u>schmitz@iob.rwth-aachen.de</u> | <u>www.iob.rwth-aachen.de</u>