

Alternative combustion techniques using organic fuel: case studies with CFD

Project Introduction RETROFEED

RETROFEED – Implementation of a Smart RETROfitting Framework in the Process Industry towards its Operation with Variable, Biobased and Circular FEEDstock

- ✓ Topic: H2020-CE-SPIRE-05-2019
- IA action
- ✓ Total investment: 15.454.951,88€
- ✓ EU Funding: 9.912.915,33€
- ✓ Duration 48M (November 2019 October 2023)

Project Introduction Main objective

RETROFEED main objective is to:

- enable the use of an increasingly variable, bio-based and circular feedstock in process industries through the retrofitting of core equipment, the implementation of an advanced monitoring and control system, and providing support to the plant operators by means of a DSS covering the production chain.
- This approach will be demonstrated in five Resource and Energy Intensive Industries REIIs (ceramic, cement, aluminium, steel, and agrochemical).

Project Introduction Overall concept

- Core equipment retrofitting
- ✓ Improving M&C system
- ✓ Development of new sensors
- ✓ Development of Digital Twins
- Development of Decision Support Systems
- ✓ TRL 7 solutions

Project Introduction Direct impacts

- Increasing the resource and energy efficiency of the targeted processes by 20%;
- Decrease GHG emissions through retrofitting by at least 30%;
- Decreased utilisation of fossil resources in the process industry of at least 20%;
- Reduced OPEX by 30% and increased productivity by 20%;
- Effective dissemination of major innovation outcomes to the current next generation of employees of the SPIRE sectors, through the development, by education/training experts, of learning resources with flexible usability. These should be ready to be easily integrated in existing curricula and modules for undergraduate level and lifelong learning programs.

Expected impacts on industries Efficiency metrics definition

	Resource efficiency	Energy efficiency	GHG emissions	Fossil resources use	OPEX	Productivity
Cement and	↑14% 1,016 ton/year of replaced raw	↑20% 7 GWh/year of reduced energy	↓20% 5 ktCO ₂ eq/year of reduced CO ₂	↓20% 691 kNm³/year of reduced NG	↓19% 0.3 M€/year of reduced operation	↑20% 1,03 ratio of production vs raw
concrete	materials	consumption	emissions	consumption	costs	material
	Resource efficiency	Energy efficiency	GHG emissions	Fossil resources use	OPEX	Productivity
Ceramic and glass	↑19% 12 kton/year new alternative fuels /raw materials	↑19% 220 GWh/year of reduced energy consumption	↓27% 104 ktCO2eq/year of reduced CO2 emissions	↓27% 42 kton/year reduction in fossil fuels	↓8% 2 M€/year of reduced operation costs	↑23% 2.6 ratio of production vs fossil feedstock
	Resource efficiency	Energy efficiency	GHG emissions	Fossil resources use	OPEX	Productivity
Aluminum	↑48% 7.9 kton/year less primary aluminium	↑20% 6.7 GWh/year of reduced energy consumption	↓30% 4 ktCO ₂ eq/year of reduced CO ₂ emissions	↓30% 591 kNm³/year of reduced NG consumption	↓42% 4.8 M€/year of reduced operation costs	↑49% 2.4 ratio of production vs aluminium feed
	Resource efficiency	Energy efficiency	GHG emissions	Fossil resources use	OPEX	Productivity
Steel	↑15% 1,000 ton/year lower anthracite	↑17% 24 GWh/year of reduced energy consumption	↓17% 19 ktCO ₂ eq/year of reduced CO ₂ emissions	↓11% 14 GWh/year coal and NG reduction	↓8% 0.2 M€/year of reduced operation	↑12% 12.7 ratio of production vs carbon and NG

Expected impacts on industries Efficiency metrics improvement

Cement Ceramic Aluminum Steel

Materials

The performed analysis:

- Elemental analysis
- Heating value
- Proximate analysis
- Thermogravimetric analysis

Granulated tires

Materials Proximate and Elemental analysys

	EOL tires	Plastic (I.Blu)	
PCS (MJ/kg)	34-36	32	
S (%)	1.5-2.0	0.03	
Н (%)	8.2	10	
N (%)	1.3-2.0	1	
C (%)	78-80	65-70	
O (%)	<1	-	
CI (%)	-	0.35	
Volatile matter (%)	63-35	88	
Ash (%)	8-10	8-10	
Fixed carbon (%)	25-27	1.5	
Moisture (%)	2.3	1.8	
Density (kg/m³)	1000	400	
Physical appearence	grain	grain	

Materials Proximate and Elemental analysys

Plastic is chosen

Tests - reference

✓ Check on behaviour as burner/injection

Item	Unit	Reference	Burner	Injector
Primary oxygen flow	Nm3/h	300	600	1200
Natural gas flow	Nm3/h	250	100	100
Secondary oxygen flow	Nm3/h	300	600	120
Primary oxygen pressure	bar(g)			11
Natural gas pressure	bar(g)		0.5	0.5
Secondary oxygen pressure	bar(g)		3.5	1.2
Plastic particles flow	kg/min		10	20
Plastic particles average size	mm		2	2
Compressed air flow via plastics supply line	Nm3/h	0	150	200

Burner & Injector Mode Mesh & CFD conditions

600,000 cells Pressure outlet T: 1600 C° CO₂: 100% Vall Vall Symmetry plane T: 1600 C° CO₂: 100% Ti 1600 C° CO₂: 100%

3	
۲	-Y

Plastic			
D	2	mm	
volatiles	80%	w/w	

Inlet Temperature: 25°C

 \checkmark

Kinetics

Westbrook-Dryer mechanism (WD).

	Reaction	Reaction rate		
1	$CH_4 + \frac{3}{2}O_2 \longrightarrow CO + 2H_2O$	$r_{1} = 5 \cdot 10^{11} e^{-\frac{47800}{RT}} \left[CH_{4} \right]^{0.70} \left[O_{2} \right]^{0.80}$		
2	$\text{CO} + 0.5O_2 \longrightarrow \text{CO}_2$	$r_2 = 2.24 \cdot 10^{12} e^{-\frac{40700}{RT}} [CO] [H_2 O]$		
3	$CO_2 \longrightarrow CO + 0.5O_2$	$r_3 = 5 \cdot 10^8 e^{\frac{-40700}{RT}} [CO_2]$		
Units of reaction parameters are: cal, mol, l, s.				

Table 1. Westbrook-Dryer mechanism (WD).

Jones-Lindstedt mechanism with dissociation reactions (JL-R). Optimized parameters

	Reaction	Reaction rate		
1	$CH_4 + \frac{1}{2}O_2 \longrightarrow CO + 2H_2$	$r_1 = 4.4 \cdot 10^{11} e^{\frac{-30000}{RT}} \left[CH_4 \right]^{0.50} \left[O_2 \right]^{1.25}$		
2	$CH_4 + H_2O \longrightarrow CO + 3H_2$	$r_2 = 3 \cdot 10^8 e^{-\frac{30000}{RT}} [CH_4] [H_2O]$		
3	$CO + H_2O \xrightarrow{\longrightarrow} CO_2 + H_2$	$r_3 = 2.75 \cdot 10^9 e^{-\frac{20000}{RT}} [CO] [H_2O]$		
4	$H_2 + 0.5O_2 \xrightarrow{\longrightarrow} H_2O$	$r_4 = 6.80 \cdot 10^{15} T^{-1} e^{-\frac{40000}{RT}} \left[H_2\right]^{0.25} \left[O_2\right]^{1.50}$		
5	$O_2 2O$	$r_5 = 1.5 \cdot 10^9 e^{-\frac{113000}{RT}} \left[O_2\right]$		
6	$H_2O H + OH$	$r_6 = 2.3 \cdot 10^{22} T^{-3} e^{-\frac{120000}{RT}} \left[H_2 O \right]$		
Units of reaction parameters are: cal, mol, l, s.				

Table 3. Jones-Lindstedt mechanism with dissociation reactions (JL-R).

Turbolence – chemistry coupling: Eddy Dissipation Concept (EDC)

Reaction	Parameter	Original Value	Optimized Value
1	A	$4.4 \cdot 10^9$	$3.06 \cdot 10^{10}$
1	$v_{_{f,o_2}}$	1.25	1.30
2	A	$3.80 \cdot 10^8$	$3.84 \cdot 10^9$
3	A	$2.75 \cdot 10^9$	$2.01 \cdot 10^9$
4	A	$6.80 \cdot 10^{15}$	$8.03 \cdot 10^{16}$
4	$v_{_{f,H_2}}$	0.25	0.30
4	$v_{_{f,O_2}}$	1.50	1.55

Frassoldati et al. 2009, Simplified kinetic schemes for oxy-fuel combustion

Table 4. Modified Jones-Lindstedt mechanism for oxy-fuel combustion.

Kinetics comparison

Velocity

No big differences in Velocity field.

Temperature

High T zone is larger in WD simulation, because it underestimate CO production and overestimate total combustion of CH_4 to CO_2 .

Kinetics comparison

For WD scheme: underestimate of CO and overestimate of CO_2 .

CH₄ released as volatile species in these preliminary simulations

Kinetics comparison

For WD scheme: H_2 is not considered.

For JL scheme: combustion of H₂ is considered

Burner & Injector Mode Simulation issues

- Reference mode was simulated using Jones-Lindstedt mechanism (dissociation reactions (JL-R) and optimized parameters) and eddy dissipation/finite rate (ED/FR) for turbolence – chemistry coupling
- Burner mode was simulated using an empirical mechanism and Eddy Dissipation Concept (EDC) for turbolence – chemistry coupling
- ✓ Injector mode was simulated using an empirical mechanism and Eddy Dissipation Concept (EDC) for turbolence – chemistry coupling

Results - Temperature Field [K]

Using plastic particles enlarge the high temperature zones

Results - Velocity [m/s]

Using plastic particles enlarge the high velocity zones. Especially in the Injector mode

Results - O₂ [vol/vol]

O₂ consumption are comparable among all cases

Results - CO [vol/vol]

Injector and Burner mode were simulated using a W-based mechanism and CO formation is underestimated

Results - CO₂ [vol/vol]

 CO_2 results are the same for all cases. (Flame is placed in a 100% CO_2 environment)

Conclusion

Preliminary CFD simulation pointed out plastic as combustible able to obtain flames similar to methane

Next step: Plant trial

