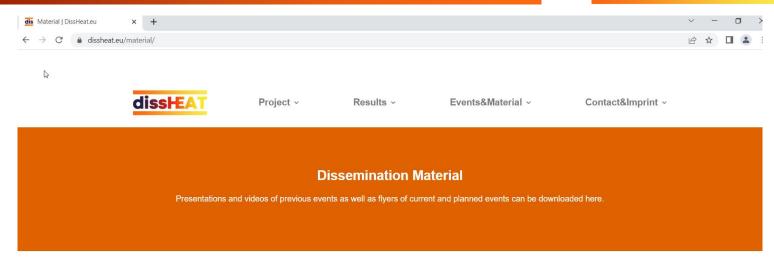

Internal summary and wrap up

Hugo Uijtdebroeks

CRM Group, hugo.uijtdebroeks@crmgroups.be

www.dissheat.eu



www.dissheat.eu

Webinar series

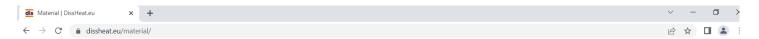
State of the art and BAT in industrial heating - open online seminar series organized by the dissHEAT project, May to June 2023

Introduction to the Dissheat project and webinar series

Andreas Johnsson – For presentation as PDF klick here.

Heating and burner technology, seminar form May 2, 2023

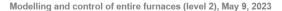
For Video of webinar klick here.



www.dissheat.eu

Heating and burner technology, seminar form May 2, 2023

For Video of webinar klick here.


Research findings and technical development over the last 20 years

Oliver Hatzfeld – For presentation as PDF klick here.

New concepts for industrial heating and burner technology

Oliver Hatzfeld – For presentation as PDF klick here.

For Video of webinar click here.

Alternative combustion techniques using organic fuel: case studies with CFD Davide Ressebotti – For presentation as PDF klick here.

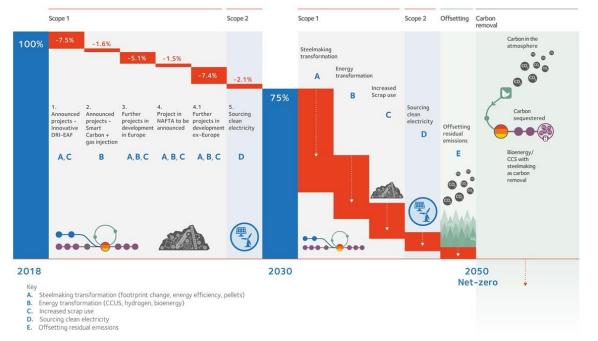
Research developments during the last 20 years and todays BAT and State of Art Filippo Avellino – For presentation as PDF klick here.

Materials in the furnace and product quality, May 23, 2023

For Video of webinar click here.

Focus

- In this work shop we have tried to give you an overview on reheating by:
 - Findings, annalysis and outlook in the different fields of reheating
 - A draft roadmap for future research
 - 3 guest presentations related to industrial heating and outlook
 - Panel discussion
- In this last part of the work shop we would like to give you, the addience the possibity to address direct questions, guidance, corrections, ... to us, the consortium.



Global focus of research

 Global focus of the roadmap for future research is reducing CO2 emissions by 35 per cent by 2030, and of achieving carbon-neutral steelmaking by


2050.

ArcelorMittal

Future research need: heating and burners

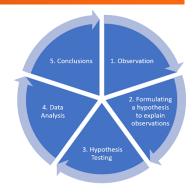
- Heating with new fuels, hybrid and combinations:
 Hydrogen, biofuels, oxy-fuel, electrical heating (Topic 5)
 => Flameless or ultra LowNO_x combustion
- Efficiency with new technologies and heat revovery if applicable Dark zone / heating with off gas from new fuels, hybrid and combinations

Oxidizer	Preheating oxidizer	Dark zone
Air		
Oxygen enhanced combustion (OEC)		
Oxy-fuel (100 % Oxygen)		

Future research need: heating and burners

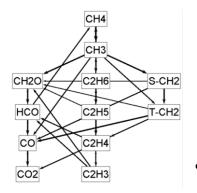
Impact on product and plant

- Hydrogen combustion, electrical heating and combinations:
 - Influence on product-material, temperature uniformity, scaling
 - Influence on furnace and heating equipment when technologies are combined: i.e. high H₂O content in exhaust gas
 - => influence on resistance heaters
 - => influence on refractory and insulation
 - Security when handling H₂



Future research need Modelling and control (level 2) Relevant new technologies

Extended satistical approach



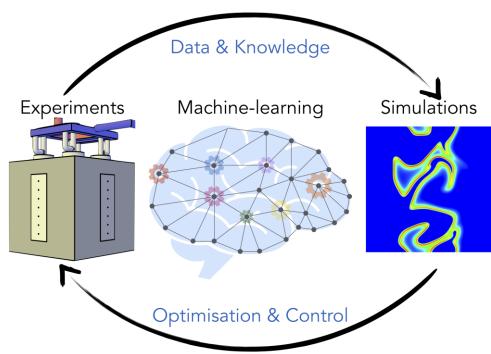
 Artificial Intelligence and Machine Learning approach

• Improved kinetic schemes

Future research need Modelling and control (level 2) Technology impact and integration research

 Use of machine learning and/or joining of statistical models and physical models (physicalinjected neural network)

 Dynamic and/or auto-adaptive modeling for process control



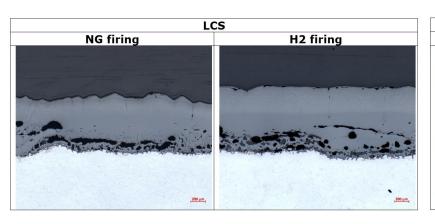
- Flame monitoring
- Kinetic scheme for pollutant prediction (including the formation of NOx and particulate emissions)

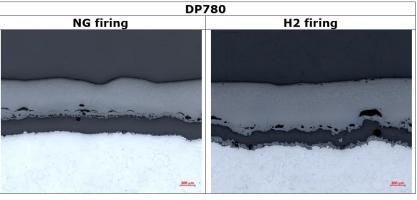
Sensors and control (level 1)

- 1. Research gaps for alternative heating systems for sensors and control:
 - Influence of fuel blends on flow measurement
- Influence on fuel quality measurement
- Optimization of air-to-fuel ratio for new fuels, oxidizers and fuel flexible operation
- Influence on off-gas composition and pollutant emission
 measurements → Development of emission measurement system
- Temperature measurement for process control for electrical and hybrid heating systems

Sensors and control (level 1)

2. Open topics concerning legislation for alternative heating systems:

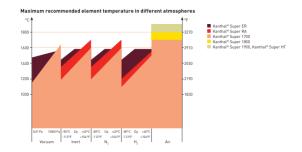



- NO_x limit definitions
- Revision of BREF FMP to new limit definitions
- Emission measurement standards

Materials and product quality

- 1. Study the impact of residuals on product quality
 - Cu: diffuses quickly leading to segregation, roughening and intergranular oxidation
 - Mo: above 0,25% will increase scale adhesion
- 2. Perform a full screening of all grades related to the different reheating alternatives (e.g. 100% Hydrogen combustion)

Materials and product quality


3. Adaptations:

- Gas flow and composition (e.g. Nitrogen injection at exit)
- Coatings
- Alternative metallugical composition

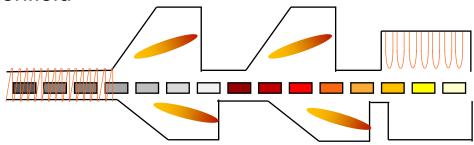
4. Wear of components:

- Burner nozzle wear by hydrogen flame
- Wear of electrical resistances
- Wear / adhesion on ceramics

Heat recovery, heat transfer, productivity

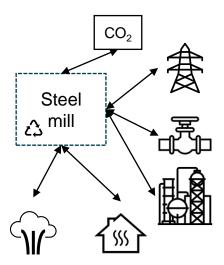
Flexifuel strategies

Optimization of hybrid fuel usage (H₂, NG)



Technology integration research

- Hybrid furnace operation (induction, combustion, resistive)
 - Retrofit
 - Greenfield



Heat recovery, heat transfer, productivity

System integration research

- Internal integration within steel mill
- Options for CCS/CCU
- Flexible interaction with gas and power grids
- Oxygen use
- Integration with chemical industry for synthetic fuel production
- Heat integration with steam production or hot water production

Thank you for the attention!

Stay informed www.dissheat.eu