

Nordic Steel Industry

- Many steel mills in category special steel
- Relatively small production units
- Large variety of products
- Process development essential

Nordic situation

- No major NG pipeline
- Electricity price comparable low and fortunately high degree fossil free.
- Large forest industry
- Cold weather
- Environmental legislations demands (NOx, CO2)
 - Historically a lot of different fuel has been used.
 - High degree of downstream electrification.
 - Oxygen combustion since 1991 and widespread.
 - Potential for gasification of residuals from forest, sawmill and agriculture, Methanol, DME, Syngas...
 - District heating profitable

Major steps in present and upcoming time

- Höganäs: Bio-gasification plant for energy gas and biocoke, inaugurated 2019.
- Ovako: investment in Hydrogen for reheating, commissioning 2023 (20MW Hofors). Continues with oxyfuel conversion on large scale.
- Bio-DMI tested in industrial scale at Björneborg steel mill 2022.
- SSAB: Planning for CSP in conjunction to new steel mills.
- Alleima: Hydrogen combustion trials in production furnaces. (2022)
- Outokumpu Avesta: Oxygen in slab reheating 2023.
- Several trials and ordinary operation with the mixing of biomethane
- Joint research: plasma burner, H2 tests, electrical heating methods, measuring techniques.

Summary of Nordic conditions and premises for CO2-free heating

- The market is the driving force
- Small production units
- ► Electrification (in any form) an attractive alternative
 - Experience of electrification
 - O2 combustion already in place at many places
 - H2 via electrolyze a tangible alternative
- Bio based fuel (e-fuels) a complementary strategy

Will Nordic countries lead the implementation of new technologies?

electricitymaps.com

Change in technology

Induction heating

Fast and high efficiency at low temperature

Hydrogen/Biogas + Oxygen *Heating high atmosphere T*

Electrical element heating.

When lower heating demands. Eg soaking

Heating Systems Hardware

- Support the demands for meeting material properties
 - Temperature distribution within material
 Example: heating solutions that eliminates/avoids skid marks.
 - Surface quality
 Example: oxidizing/reducing atmosphere
- Controllability
 - Behave consistent and predictable
 - Example: heat distribution, correctly dimensioned valves for precise oxidizer/fuel ratio setting in all operating modes
- Efficiency
 - Eliminate heat losses
 - Heat recovery, flue gas condensation
- Durability
 - Direct electricity methods, refractory...

Sustainable Environment

Efficient

Heating System Control

Today:

Furnace (material) is controlled by temperature. Temperature is the "only" measure for fulfill heating criteria.

Future:

Material properties to be controlled.

- Measuring or other approaches for establish initial state
 - Analyses, dimension, oxide, defects, grain size, carbide size distribution
- Online methods for predict material properties during heating
 - Material physical properties (T&t-depended) *)
 - Measuring techniques, direct: elongation of material boundary conditions: temperature, atm...
 - Models, 3d representation of material and boundary conditions.
 - Scale formation
- ► Feedback systems
 - Short: mill temperature or LUS measurements
 - Long: material properties at samples

*) Especially the electromagnetic properties when utilizing induction.

Heating System Control & Supervision

- Need to meet requirements for material conditions
- Energy and environmental optimized
- A minimum of unplanned maintenance and rework

- ► Ensure basic measurement and settings.
 - E.g. thermocouple placing, air/fuel control, distribution of fuel to several burners
 - Condition Monitoring of equipment and furnace (AI)
 - Thermocouples, Electrical elements, energy consumption and emissions.
- Expanding the scope of measurements and control capabilities.
 - IR-cameras for measuring flame conditions or hot spots
 - Refractory status measurements
 - Flame length control

Questions during the panel discussions!

