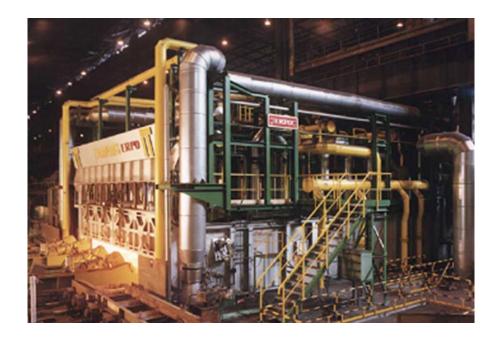

Sustainable blast furnace gas firing in reheating furnaces

Global Research and Development June 2023 Víctor Cuervo-Piñera


STEEL

R&

Sustainable blast furnace gas firing in reheating furnaces

Outline

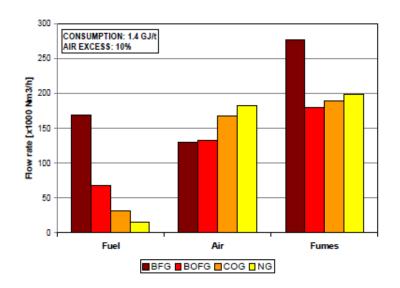
- Motivation
- BFG-Based Combustion Systems
 - Preheated-BFG air-fuel burner
 - Double regenerative air-fuel burner
 - Preheated-BFG oxy-fuel burner
- Industrial implementation
- Conclusions

Motivation

- Necessity to increase competitiveness due to rising energy cost
 - Cut natural gas (NG) dependence
- Commitment with a sustainable steel production:
 - Reduction carbon footprint
 - Control NOx emissions
- Steelworks primary energy, carbon and NOx footprints can be reduced by using blast furnace gas (BFG)
 - Produced in huge quantities
 - Consumed internally in hot stoves, coke plant and steam boilers
 - Used in power generation
 - Reheating furnace may replace a big share of NG by BFG

✓ Net-zero by 2050

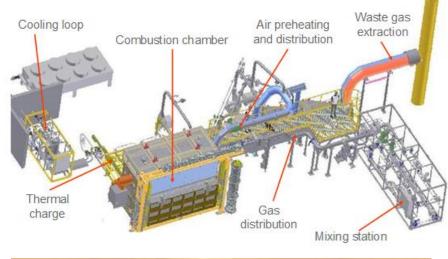
 ✓ 35% reduction in CO₂e emissions by 2030 in Europe


Finishing operations:

- ~10% of carbon footprint
- 30% in future DRI-EAF route

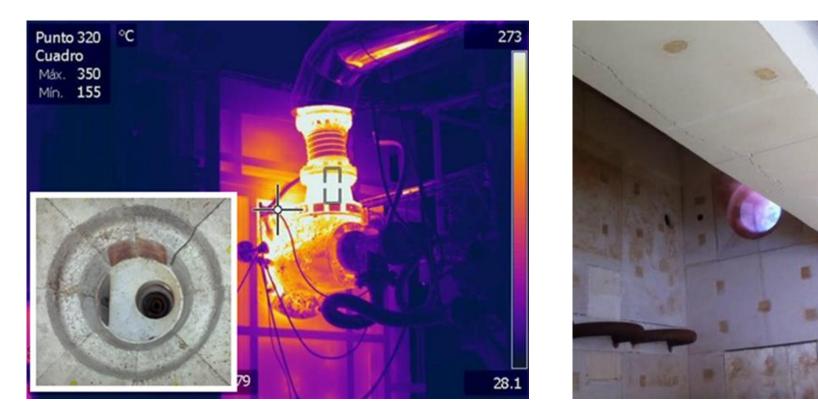
Blast furnace gas combustion

- Potential:
 - Reduction of natural gas dependence and related emissions
 - NO_X emissions reduction (lower peak flame temperature)
- Challenges:
 - Low calorific value
 - Low combustion efficiency
 - Low flues emissivity
 - High flue gases flow
- Opportunities:
 - Waste-heat recovery from flues
 - Oxygen enrichment / oxy-fuel
- Technologies:
 - BFG central preheating
 - Regenerative burners
 - Oxy-fuel burners



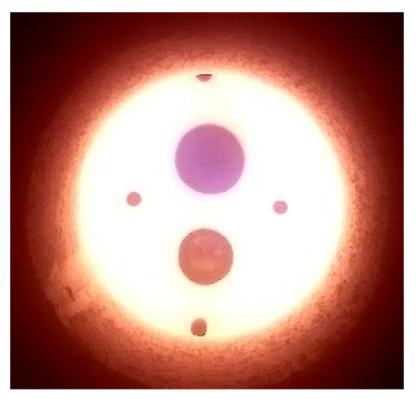
ArcelorMittal combustion test facility

- 10+ years of operation
- · Real process gases operation and hydrogen-ready
- 24/7 fully instrumented and automated
- · Validation of solutions in an industrial environment
- Participation in several research consortiums



Page 5 June 2023 Global Research and Development

Preheated-BFG air-fuel burner



Page 6 June 2023 Global Research and Development

Preheated-BFG oxy-fuel burner

Page 7 June 2023 Global Research and Development

Double regenerative air-fuel burner

Page 8 June 2023 Global Research and Development

Industrial implementation: Asturias Wire Rod Mill reheating furnace

- Revamping by SMS Meer SpA
- 150 t/h walking beam furnace
 - Billets section 150/180
 - Billets length 12-15.2 m
- Retrofitted from 100% NG
 - Dual-fuel burners
 - Flexible operation:
 - 100% NG
 - 80% BFG (98%-vol.)
 - Preheated blast furnace gas
 - Additional waste gas duct
- In operation since 2015
 - 70% natural gas reduction
 - 40 kt/y CO₂ reduction

Conclusions

- Reheating furnaces can be operated with 100% BFG if the fuel gas is preheated, either with oxy-fuel burners or regenerative burners.
- NO_X emissions remain below the current limit established by the European regulation.
- BFG regenerators allow firing 100% BFG without oxygen supply or NG enrichment.
 - However, a post-combustor or regenerator purging is advisable in order to prevent the presence CO in the stack level.
- Long-term testing of real size burners at industrial and controlled conditions is very useful step before industrialization.
- Asturias Wire Rod Mill reheating furnace has been revamped in 2015 (70% natural gas reduction, 40 kt/y CO₂).

Financial support by the European Commission (through HELNOx-BFG project under RFSR-CT-2012-00010 contract) is gratefully acknowledged

Thank you!

victor.cuervo@arcelormittal.com

Page 11 June 2023 Global Research and Development