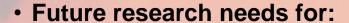

## dissHEAT Draft roadmap for future research


**Hugo Uijtdebroeks** 

CRM Group, hugo.uijtdebroeks@crmgroups.be

#### **Structure**







- "Heating and burner technology"
- "Modelling and control (level 2) of entire furnaces"
- "Sensors and control (level 1), standards, regulations"
- "Materials in the furnace and product quality"
- "Heat transfer, heat recovery, productivity economy



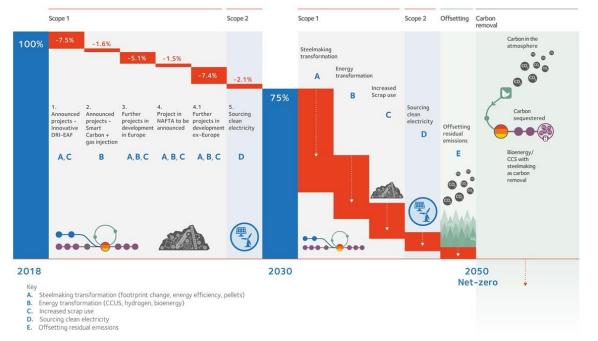













#### Global focus of research



 Global focus of the roadmap for future research is reducing CO2 emissions by 35 per cent by 2030, and of achieving carbon-neutral steelmaking by


2050.



**ArcelorMittal** 

## Future research need: heating and burners





- Heating with new fuels, hybrid and combinations:
   Hydrogen, biofuels, oxy-fuel, electrical heating (Topic 5)
   => Flameless or ultra LowNO<sub>x</sub> combustion
- Efficiency with new technologies and heat revovery if applicable Dark zone / heating with off gas from new fuels, hybrid and combinations

| Oxidizer                         | Preheating oxidizer | Dark zone |
|----------------------------------|---------------------|-----------|
| Air                              |                     |           |
| Oxygen enhanced combustion (OEC) |                     |           |
| Oxy-fuel (100 % Oxygen)          |                     |           |















## Future research need: heating and burners





#### Impact on product and plant

- Hydrogen combustion, electrical heating and combinations:
  - Influence on product-material, temperature uniformity, scaling
  - Influence on furnace and heating equipment when technologies are combined: i.e. high H<sub>2</sub>O content in exhaust gas
    - => influence on resistance heaters
    - => influence on refractory and insulation
  - Security when handling H<sub>2</sub>

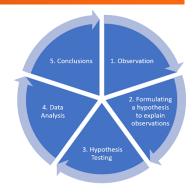















## Future research need Modelling and control (level 2) Relevant new technologies



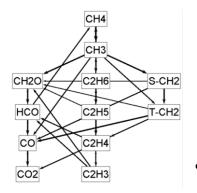
Extended satistical approach


















 Artificial Intelligence and Machine Learning approach





• Improved kinetic schemes

# Future research need Modelling and control (level 2) Technology impact and integration research



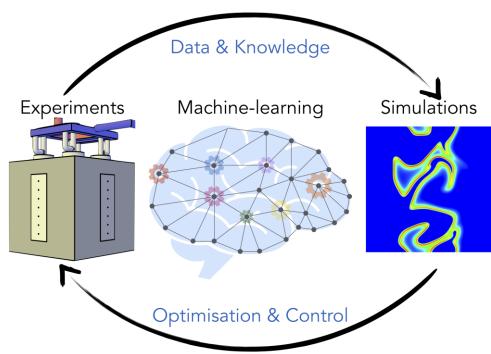
 Use of machine learning and/or joining of statistical models and physical models (physicalinjected neural network)





 Dynamic and/or auto-adaptive modeling for process control












- Flame monitoring
- Kinetic scheme for pollutant prediction (including the formation of NOx and particulate emissions)



## Sensors and control (level 1)



- 1. Research gaps for alternative heating systems for sensors and control:
  - Influence of fuel blends on flow measurement
- Influence on fuel quality measurement
- Optimization of air-to-fuel ratio for new fuels, oxidizers and fuel flexible operation
- Influence on off-gas composition and pollutant emission
  measurements → Development of emission measurement system
- Temperature measurement for process control for electrical and hybrid heating systems















## Sensors and control (level 1)



2. Open topics concerning legislation for alternative heating systems:

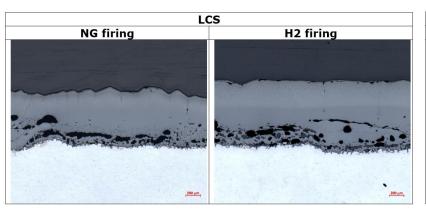


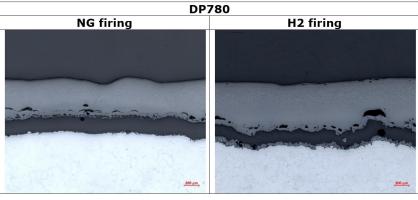












- NO<sub>x</sub> limit definitions
- Revision of BREF FMP to new limit definitions
- Emission measurement standards

## Materials and product quality



- 1. Study the impact of residuals on product quality
  - Cu: diffuses quickly leading to segregation, roughening and intergranular oxidation
  - Mo: above 0,25% will increase scale adhesion
- 2. Perform a full screening of all grades related to the different reheating alternatives (e.g. 100% Hydrogen combustion)













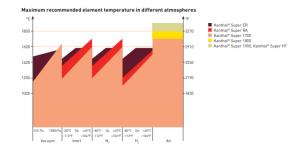






## Materials and product quality




#### 3. Adaptations:

- Gas flow and composition (e.g. Nitrogen injection at exit)
- Coatings
- Alternative metallugical composition

#### 4. Wear of components:

- Burner nozzle wear by hydrogen flame
- Wear of electrical resistances
- Wear / adhesion on ceramics



















## Heat recovery, heat transfer, productivity



#### Flexifuel strategies

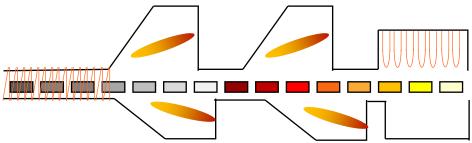
Optimization of hybrid fuel usage (H<sub>2</sub>, NG)









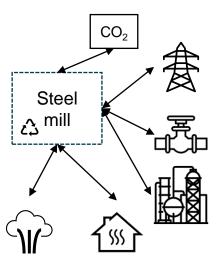

SWERI/M





#### Technology integration research

- Hybrid furnace operation (induction, combustion, resistive)
  - Retrofit
  - Greenfield




## Heat recovery, heat transfer, productivity



#### System integration research

- Internal integration within steel mill
- Options for CCS/CCU
- Flexible interaction with gas and power grids
- Oxygen use
- Integration with chemical industry for synthetic fuel production
- Heat integration with steam production or hot water production



























### Thank you for the attention!

Stay informed

www.dissheat.eu