

Heating and Burner technology Research and development analysis and findings

Oliver Hatzfeld

Senior Expert, VDEh-Betriebsforschungsinstitut GmbH (BFI) oliver.hatzfeld@bfi.de

Focus of investigations in reviewing:

heating and burner technology

Specific

- Furnace and burner types
- Fuels and air preheating/heat recovery
- NO_X and GHG-Emissions
- General
- NTHAACHEN UNIVERSITY

) SWERIM

Bŗi

RIR

• Requirements of production on heating process

Main research topics and achievements

- Efficiency, energy consumption and CO₂ reduction
 - ➢ 30 to 40% by regenerative heat recovery
 - ➢ 9 to 14% Oxy-fuel combustion
 - ➢ 5 to 10% by furnace automation and control
- Process gases and fuel preheating
 - Substitution of NG, overall energy consumption in steel work reduced
 - Productivity increase => specific energy consumption and CO₂ decrease
 - NO_X-Emissions
 - Decrease from > 500 mg/Nm³ to below 100 mg/Nm³ (5% O₂ in exaust) due to regulations

Bŗi

|--|

) SWERIM

Best Available Technique for avoiding CO2 in industrial heating

- · Costomized, optimized and well designed furnace
- Flameless, ultral LowNO_X combustion due to NO_X emissions
- Heat recovery with regenerative or recuperative oxidizer-preheating:

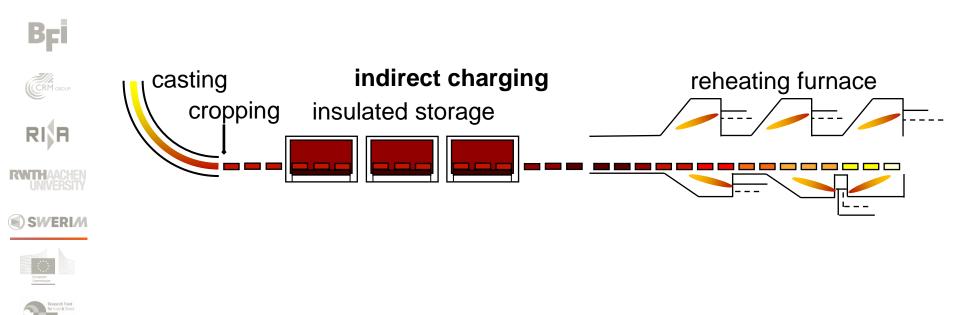
Oxidizer	Preheating oxidizer
Air	
Oxygen enhanced combustion (OEC)	
Oxy-fuel (100 % Oxygen)	

) SWERIM

BFi

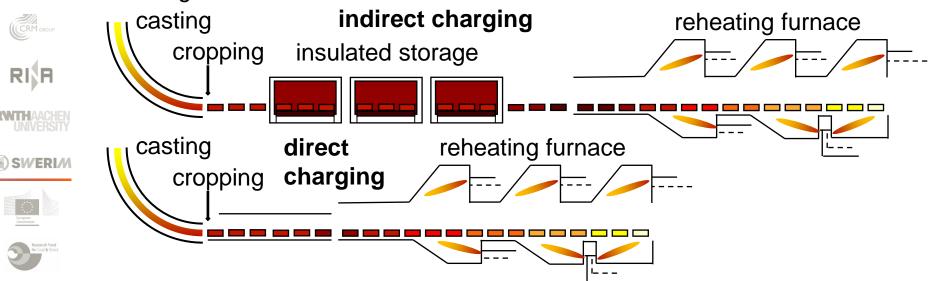
RIR

 Automation and control: temperature, oxygen control (dissHEAT project-topic 2 and 3)



Process chain – Efficiency increase

1. casting not coupled with downstream: hot or warm charging



Bŗi

Process chain – Efficiency increase

- 1. casting not coupled with downstream: hot or warm charging
- 2. continuous casting and rolling: direct charging, combining rolling and casting

Relevant new technologies

- Relevant new technologies
 - Hydrogen combustion and alternative fuels
 - Hybrid (electrical and/or NG heating)
 - Electrical heating -> topic 5 presentation

Bŗi

WERIN

Source: https://www.fivesgroup.com/ steel/reheating/combustion-systems

Source: https://www.danieli.com/en/newsmedia/news/danieli-hydro-mab-take-stepahead-green-steel_37_596.htm

Source: https://doi.org/10.1051/mattech/2022012

Source: https://www.sms-group.com/enus/insights/all-insights/a-burner-for-all-mixratios-of-natural-gas-and-hydrogen

Thank you for the attention!

Stay informed www.dissheat.eu

Success story

- Regenerative flat flame burner developed in research projects for NG and proccess gases COG and BOF
- 300 regenerative burner systems sold worldwide for mainly batch type reheating furnaces.

Bŗi

RIR

SWERI/M

Technology impact and integration research:

- Heating with new fuels, hybrid and combinations: Hydrogen, biofuels, oxy-fuel, electrical heating (Topic 5)
 => Flameless or ultra LowNO_x combustion
- Efficiency with new technologies and heat revovery if applicable Dark zone / heating with off gas from new fuels, hybrid and combinations

Oxidizer	Preheating oxidizer	Dark zone
Air		
Oxygen enhanced combustion (OEC)		
Oxy-fuel (100 % Oxygen)		

dissHEAT

UNIVERSITY

SWERI/M

dissHEAT

Technology impact and integration research:

Impact on product and plant

- Hydrogen combustion, electrical heating and combinations:
 - Influence on product-material, temperature uniformity, scaling
 - Influence on furnace and heating equipment when technolgies are combined: i.e. high H₂O content in exhaust gas => influence on resistance heaters
 - => influence on refractory and insulation
 - Security when handling H₂

SWERI/

Bŗi

RIR

